
Vertex
Data

Vertex
Shader

Tessellation
Control
Shader

Tessellation
Evaluation

Shader

Geometry
Shader

Visualization with OpenGL

Essential approaches to programming computer graphics with
Open Graphics Language (OpenGL) graphics library are described.
This document serves as the basis for exercises in PRACE Summer
of HPC Visualization training. Rationale for giving introduction to
OpenGL is that such knowledge is important when developing
codes that require some specific visualization for which OpenGL
can be handy. Programming Graphical Processing Unit (GPU)
through shaders is an important technique to accelerate graphics
and other embarrassing parallel problems. OpenGL evolved from
immediate mode to GPU only processing with the advent of
OpenGL Shading Language (GLSL). GLSL is used for tutorial
without the tendency to introduce photo-realismas output but
rather useful colors for scientific data exploration. Introduction to
the subject is given by recipes to follow, discussing important techniques for visualization
that can also be extended to general GPU programming for parallel computing. Instead of
jumping to the latest OpenGL specification we use minimum required OpenGL 2.1 with the
extensions currently available on modest hardware and still be able to use modern OpenGL
3.1+ programming principles.

Running this tutorial on Linux desktop one requires at least the OpenGL 2.1 graphics with
the GLSL 1.2 and supporting libraries GL, GLU, GLUT, GLEW. This can be verified with the
following commands:

$ glxinfo |grep OpenGL.*version
OpenGL version string: 2.1 Mesa 8.0.5
OpenGL shading language version string: 1.20
$ ls /usr/include/GL/{glut.h,glew.h,gl.h,glu.h}
/usr/include/GL/glew.h /usr/include/GL/glu.h
/usr/include/GL/gl.h /usr/include/GL/glut.h

Introduction

For the visualization of specific phenomena is usually not possible to use a general purpose
visualization tools. Such cases occur especially in the visualization of engineering and
physics problems. The modeling results are usually not only simple function plots but
complex objects such as graphs, hierarchical structure, animation, motion mechanism,
control channels, volume models of specific forms, ...

Through the time different standards were effective for computer graphics. This is mainly
due to the complexity of implementation and closed code in the past. OpenGL remains the
only widely accepted open standard, which was first introduced on Silicon Graphics
workstations (SGI). There exist also a Microsoft Direct3D, which is limited to PCs with
Windows and is not as easy to use as OpenGL, which is due to its openness and capacity
provided on all operating systems and hardware platforms. OpenGL stagnated for some time
with upgrades to the original SGI specification. Many extensions previously available from
hardware vendors are now standardized with OpenGL 3+ where things dramatically
changed. Immediate mode programming where communication from OS to GPU was regular
practice and major obstacle to graphics performance. Programming knowledge of OpenGL
1.x is therefore not recommended for nowadays and can simply be forgotten and treated as
legacy.

Modern OpenGL changed previously fixed
rendering pipeline to fully programmable
graphics pipeline as shown in Fig.1
Processors that transform input vertex data
to the window context at the end are called
shaders. The Vertex shader and the
Fragment shader are most important in the
rendering pipeline. To use rendering pipeline

Visualization with OpenGL
Introduction
Legacy OpenGL

Events
GLUT
Exercises #1:

Modern OpenGL
Exercises #2

Interactivity
Exercises #3

Reading Objects
Exercises #4

Homework

1

Shader Shader

Primitive
Setup

ClippingRasterization

Fragment
Shader

Window Context

as shown in Fig.1 one has to provide
program for them as there is no default
because they are essential part of every
OpenGL program. Programming shaders is
done in GLSL (OpenGL Shading Language)
that is similar to C language with some
predefined variables and reserved keywords
that help describing communication between
OS and GPU. Programs (for shaders) written
in GLSL are compiled on-the-fly, assembled
and transferred to GPU for execution.

OpenGL is designed as a hardware-
independent interface between the program
code and graphics accelerator. Hardware independence of OpenGL means also that in the
language specification there is no support for control of window system events that occur
with interactive programming. For such interactive control for each operating system were
designed interfaces that connect the machine with the OpenGL system. Due to the specifics
of different window systems (Windows, XWindow, MacOS, iOS, Android) it is required that
for each system tailored techniques are used to call OpenGL commands in hardware.
Portability is thus limited by graphical user interface (GUI) that handles OpenGL context
(window). In order to still be able to write portable programs with otherwise limited
functionality of the user interface, GLUT library (OpenGL Utility Toolkit) was created. It
compensates all the differences between operating systems and introduces a unified
methods of manipulating events. With the GLUT library it is possible to write portable
programs that are easy to write and have sufficient capacity for simple user interfaces.

Legacy OpenGL

Basics of the OpenGL language are given in the (core) GL library. More complex primitives
can be build by the GLU library (GL Utility) which contain the routines that use GL routines
only. GLU routines contain multiple GL commands that are generally applicable and have
therefore been implemented to ease OpenGL programming.

To get quickly introduced into OpenGL it is better to start with legacy (short and simple)
program that will be later replaced with modern OpenGL after discussion that caused
replacement with OpenGL 3.x. Unfortunately FORTRAN support for modern OpenGL is
lacking bindings for GLEW. Legacy OpenGL programming in Fortran is still possible. Before
we can dive in OpenGL we need to revise windowing systems and how they interact with
users.

Events

All window interfaces (GUI) are designed to operate on the principle of events. Events are
signals from the Window system to our program. Our program is fully responsible for the
content of the window. Windowing system only assigns area (window). The contents of the
window area must then be fully controlled. In addition to the window assignment the
windowing system to sends messages (events) to our program. The most common
messages are:

display
The command asks for presentation of window contents. There are several possible
occasions when this happens. For example, when another window reveals part of our
window or when window is moved on the screen. Another example is when window is
re-displayed after icon is being pressed at the taskbar. Interception of such events is
mandatory, because every program must ensure that the contents of the window is
restored window, when such event occurs.

reshape
Command to our program that occurs when the size and/or shape of the window
changes. In this case the content of the window must be provided for a new window
size. Event occurs, inter alia, when the mouse resizes the window. Immediately after
reshape, display event is sent.

keyboard

2

Commands coming from the keyboard.
mouse

Describes the mouse buttons at their change when user pressed or released one of the
buttons.

motion
This command defines the motion tracking of the moving mouse with pressed button.

timer
Program requests message after a certain time in order to change the contents of the
window. The function is suitable for timed simulation (animation).

In addition to these events there exist some other too. In general it is not necessary that all
events to a window are implemented in our program. It is our responsibility to decide which
events will be used in the application. Usually program must notify windowing system which
events will took over and for that window will receive events.

GLUT

For an abstraction of events (commands from the windowing system) we will use GLUT
library (OpenGL Utility Toolkit). Many other GUI libraries are available (native and portable).
GLUT falls into the category of simple operating/windowing system independent GUIs for
OpenGL. An example of a minimal program that draws a single line is shown in Listing 1
(first.c). \lstinputlisting[caption=Drawing a line with OpenGL and GLUT., label=first.c
]{first.c} Program in C language consists of two parts: the subroutine display and the main
program. Program runs from the start in main() and at the end falls into endless loop
glutMainLoop that calls registered subroutines when event occurs. Before falling into
glutMainLoop we need to prepare drawing context.

Listing 1: first.c

#include <GL/glut.h>

void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 0.4, 1.0);
 glBegin(GL_LINES);
 glVertex2f(0.1, 0.1);
 glVertex3f(0.8, 0.8, 1.0);
 glEnd();
 glutSwapBuffers();
}

int main(int argc, char *argv[])
{
 glutInit(&argc,argv);

glutInitDisplayMode(GLUT_DOUBLE);
 glutCreateWindow("first.c GL
code");
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Listing 2: first.py

from OpenGL.GLUT import *
from OpenGL.GL import *
import sys

def display():
 glClear(GL_COLOR_BUFFER_BIT)
 glColor3f(1.0, 0.4, 1.0)
 glBegin(GL_LINES)
 glVertex2f(0.1, 0.1)
 glVertex3f(0.8, 0.8, 1.0)
 glEnd()
 glutSwapBuffers()

if __name__ == "__main__":
 glutInit(sys.argv)

glutInitDisplayMode(GLUT_DOUBLE)
 glutCreateWindow("first.py
GL code")
 glutDisplayFunc(display)
 glutMainLoop()

Structure of the program is usually very similar for all languages. Confer Listing 2 (first.py)
rewritten in Python. All GLUT programs include commands in the following order:

Include definitions of constants and functions for OpenGL and GLUT with the include
statement.
Initialize GLUT and setup other variables that are not directly related to OpenGL but
rather to the object that is being visualized.

3

Set window parameters such as initial position, size, type, bit plane memory.
Create the window and name it.
Setup the features of the OpenGL machine. These are usually commands glEnable
for setup of lighting, materials, lists, and non-default behavior of OpenGL machine.
Register call-back routines which will be called at events. Mandatory registration is just
for glutDisplayFunc(display) . The rest are optional.
The last command in main is a call to glutMainLoop , from which the program
returns when the window is closed. At the same time the main program ends.

The command glutInit initializes GLUT library routines. It is followed by a request for
window creation of a certain type. The constant GLUT_DOUBLE and the default GLUT_RGB
suggests that we want a double-buffered window with a RGB space. Variable window keeps
reference of window returned by glutCreateWindow and at the same time instructs the OS
to set the window title. We have to tell to the window system which events the program will
intercept. For example given, this is only display of the contents of the window. Call of
the subroutine glutDisplayFunc instructs the glutMainLoop that whenever requests
from OS for window redisplay occurs subroutine display should be called. Routines for
handling events are usually called call-back routines as it reside in program as standalone
code snippets that are called auto-magically at certain events from the windowing system.
When some event occurs is up to the windowing system that follows user interaction. The
main point to emphasize here is that registered call-back routines do get additional
information on the kind of event. For example of keyboard event we can get also mouse
(x,y) coordinates besides the key pressed.

We have seen that the subroutine display includes commands responsible for drawing in
the window. All routines or functions there are OpenGL and have prefix gl to the name.
Prefix is necessary to distinguish them and prevent name clash with other libraries. To
understand the language one can interpret function names without prefixes and suffixes as
the OpenGL is designed so, that the types of the arguments for all programming languages
are similar. Subroutine display is therefore responsible for drawing the contents of the
window. The glClear command clears the entire area of the window. When clearing we
need to define precisely what we want to clear by argument given. In our case, this is
GL_COLOR_BUFFER_BIT , which means clearing of all pixels in the color buffer.

The glColor command to sets the current color of graphic elements that will be drawn in
subsequent commands. As an argument RGB color components are passed. Usually
commands with multiple arguments are provide for different data types (integer, float,
double) and some command can have different number of arguments for the same
command. To distinguish them suffix is added. For the glColor3f suffix 3f therefore
means that the subroutine has three arguments of type float. Choice of the arguments type
depends on application requirements. Programmer can freely choose data type that suits
most without the need of data type conversion. In our example we have two variants for
vertex command with different number of arguments of the same type. glVertex2f means
that we are specifying just two coordinates while the third is by default z=0. Types of the
arguments specified as the suffix letter are as follows:

f
float in C language and real*4 in Fortran.

d
double for C and real*8 in Fortran.

i
integer (4 bytes).

s
short integer in C and integer*2 in Fortran.

Besides fixed number of arguments there are also functions that take as an argument vector
(as a pointer to memory). For these the suffix contains letter v at the end. Below are some
interpretations of suffixes:

3f
Three arguments of real s follow as arguments.

3i

4

Three arguments of integer s follow as arguments.
3fv

One argument as a vector that contains three float s follows.

Variety of different arguments for the same command can be in glVertex command where
we can find

 glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d,
glVertex3f,
 glVertex3i, glVertex3s, glVertex4d, glVertex4f, glVertex4i,
glVertex4s,
 glVertex2dv, glVertex2fv, glVertex2iv,glVertex2sv, glVertex3dv,
glVertex3fv,
 glVertex3iv, glVertex3sv, glVertex4dv,glVertex4fv, glVertex4iv,
glVertex4sv.

Large number of routines for the same function is performance and language related in
order to waive the default conversion and thus provide a more comprehensive and faster
code. For languages with name mangling like C++ one can find simpler OpenGL wrapped
functions (eg. just glVertex) that don't affects performance. But as many languages does
not have name mangling built into compiler such practise is not widespread. Besides
specifying single vertex each time one can use glVertexPointer and points to memory
where number of vertices of specified type exist. This can save us of some looping, but as
this is essentially copying of system memory into OpenGL hardware engine, the performance
is not really improved.

Drawing of graphic primitives in OpenGL occurs between two commands
glBegin(primitive type) and glEnd() . Primitive type given as argument at the

beginning specifies how subsequent vertices will be used for primitive generation. Instead of
giving primitive type as number several predefined constant are provided within include
directive to ease readability and portability of the OpenGL programs. Before providing vertex
position one can change OpenGL engine primitive state such as current drawing glColor3f
or glNormal that is per vertex property.

The last command in the display subroutine is glutSwapBuffers() . For applications in
which the contents of the display changes frequently, it is most appropriate to use windows
dual graphics buffers, which is setup by using the GLUT_DOUBLE at window initialization.
The advantage of such drawing strategy is in the fact that while one buffer is used for
current drawing the other is shown. Drawing thus occurs in the background and when buffer
is ready for display we simply flip the buffers. In particular it should be noted that such
behaviour is system dependent and once upon a time when the GLUT_SINGLE (without
double buffers) with the glFlush() at the end was used instead. Nowadays GLUT_DOUBLE
is usually used, which is most helpful with high frame-rate applications such as animation.
Only simple primitives are used within OpenGL. Reason for that is mainly due to the
requirement of performance and possible hardware acceleration. There are three types of
simple primitives: points, lines, and triangles. Higher level primitives (like quadrilaterals) can
be assembled from simple ones. Curves can be approximated by lines. Large surfaces can be
tessellated with triangles. For complex surfaces (like NURBS) GLU library can be used to
calculate vertices. The following line primitives are possible:

GL_LINES
Pairs of vertices in a vertex stream create line segments.

GL_LINE_STRIP
Vertex stream builds connected lines (polyline).

GL_LINE_LOOP
Same as polyline above except that last vertex is connected by a line to the first.

Every surface can be assembled with triangles.

GL_TRIANGLES
For each triangle three vertices are required from vertex stream.

GL_TRIANGLE_STRIP

5

Strip of triangles. For first triangle three vertices are needed. For every additional
vertex new triangle is created by using last two vertices.

GL_TRIANGLE_FAN
Triangles are added to the first one by using first and last vertex to create a triangle
fan.

Exercises #1:

Create the following first.c using your favorite editor.

#include <GL/glut.h>

void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 0.4, 1.0);
 glBegin(GL_LINES);
 glVertex2f(0.1, 0.1);
 glVertex3f(0.8, 0.8, 1.0);
 glEnd();
 glutSwapBuffers();
}

int main(int argc, char *argv[])
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_DOUBLE);
 glutCreateWindow("first.c GL code");
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

1.

Create the Makefile to build your program.

CFLAGS=-Wall -g
LDFLAGS=-lGL -lGLU -lglut -lGLEW

ALL=first
default: $(ALL)

first : first.o

clean:
 rm -rf *.o *~ [!m]*.obj core* $(ALL)

Beware that Makefile is TAB aware. So the last line should contain TAB indentation and not
spacing.

Make and run the program with

make
./first

Add RGB color to vertices with glColor3f(0.0, 0.4, 1.0); .2.
Replace single line drawing in display() with the following snippet

 GLfloat vertices[][2] = {
 { -0.90, -0.90 }, // Triangle 1
 { 0.85, -0.90 },
 { -0.90, 0.85 },
 { 0.90, -0.85 }, // Triangle 2

3.

6

 { 0.90, 0.90 },
 { -0.85, 0.90 }
 };

and try to draw two wireframe triangles in a loop. Change primitive to
GL_LINE_LOOP .

Draw two primitives with GL_TRIANGLES .4.
Add different color to each vertex.

 GLfloat color[][3] = {
 {1, 0, 0}, {0, 1, 0}, {0, 0, 1},
 {1, 1, 0}, {0, 1, 1}, {1, 0, 1}};

5.

Replace loop with the following

 glVertexPointer(2, GL_FLOAT, 0,
&vertices[0][0]);

glEnableClientState(GL_VERTEX_ARRAY);
 glDrawArrays(GL_TRIANGLES, 0, 6);

glDisableClientState(GL_VERTEX_ARRAY);

How can we add color to vertices? See glColorPointer and glEnableClientState.

6.

Change background to glClearColor(0.9,1,1,1.0); and suggest initial window in
main()

glutInitWindowSize(512, 512);
glutInitWindowPosition((glutGet(GLUT_SCREEN_WIDTH)-512)/2,
 (glutGet(GLUT_SCREEN_HEIGHT)-512)/2);

7.

Add keyboard event to quit the program when pressing ESCape key with keycode 27
by adding callback function

 void keyboard(unsigned char key, int x, int y)
 {
 if (key == 27)
 exit(0);
 }

and registering event within main() by glutKeyboardFunc(keyboard); . Some
prefer key == 'q' , though.

8.

Modern OpenGL

Immediate mode programming with glBegin and glEnd was removed from OpenGL 3.x
as such transmission of vertex streams and its attributes (colors, normals, ...) from system
memory to GPU is considered as a major performance drawback. Display lists were
previously used to save stream of OpenGL calls that also included vertex data and was just
replayed at redraw. But this is inherently sequential operation that blocked parallel vertex
processing. Requirement to store vertex arrays to GPU directly as an object can solve
problem described. Storing vertex arrays into GPU also means that manipulation on them to
build the model should be inside the GPU. Legacy OpenGL included many modelling utilities
for transforming world coordinates into viewport. Transformations of coordinate systems in
3D space allowed manipulate model stack easily with glPushMatrix and glPopMatrix
commands. But similarly to glBegin / glEnd such manipulations are not used outside GPU
anymore. Instead all operations on vertex data is transferred to vertex shader. There
operations on data can be performed with standard vector math in homogeneous
coordinates.

We extend previous exercise with example that introduces OpenGL 3.x techniques:

7

OpenGL Shading Language (GLSL 1.2) where simple vertex and fragment shader are
required.
Vertex Aray Objects (VAOs) and vertex buffers (VBOs) stored in GPU.

Create triangle.c and update Makefile with new target

#include <stdio.h>
#include <stdlib.h>
#include <GL/glew.h>
#include <GL/glut.h>

GLuint program;
GLuint vbo_vertices;
GLint attribute_coord2d;

static const GLchar * vertex_shader[] = {
 "attribute vec2 coord2d;" // input vertex position
 "void main()"
 "{"
 " gl_Position = gl_ModelViewProjectionMatrix*vec4(coord2d, 0.0,
1.0);"
 "}"
};
static const GLchar * fragment_shader[] =
 {"void main()"
 "{"
 " gl_FragColor = vec4(0.4,0.4,0.8,1.0);"
 "}"
 };

void create_shaders()
{
 GLuint v, f;

 v = glCreateShader(GL_VERTEX_SHADER);
 f = glCreateShader(GL_FRAGMENT_SHADER);
 glShaderSource(v, 1, vertex_shader, NULL);
 glShaderSource(f, 1, fragment_shader, NULL);
 glCompileShader(v);
 glCompileShader(f);
 program = glCreateProgram();
 glAttachShader(program, f);
 glAttachShader(program, v);
 glLinkProgram(program);
 glUseProgram(program);

 attribute_coord2d = glGetAttribLocation(program, "coord2d");
 if (attribute_coord2d == -1) {
 fprintf(stderr, "Could not bind attribute coord2d\n");
 }
 glEnableVertexAttribArray(attribute_coord2d);
}

void send_buffers_to_GPU(void)
{
 GLuint vertex_array_object;
 glGenVertexArrays(1, &vertex_array_object);
 glBindVertexArray(vertex_array_object);

 GLfloat vertices[][2] = {
 { -0.90, -0.90 }, // Triangle 1
 { 0.85, -0.90 },

8

 { -0.90, 0.85 },
 { 0.90, -0.85 }, // Triangle 2
 { 0.90, 0.90 },
 { -0.85, 0.90 }
 };

 glGenBuffers(1, &vbo_vertices);
 glBindBuffer(GL_ARRAY_BUFFER, vbo_vertices);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
GL_STATIC_DRAW);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBindBuffer(GL_ARRAY_BUFFER, vbo_vertices);
 glVertexAttribPointer(attribute_coord2d, 2, GL_FLOAT, GL_FALSE, 0,
NULL);
 glDrawArrays(GL_TRIANGLES, 0, 6); // Draw 6 vertices
 glutSwapBuffers();
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 glutCreateWindow("GLSL Intro");
 glutDisplayFunc(display);
 glewInit();
 if (!glewIsSupported("GL_VERSION_2_0"))
 {
 printf("GLSL not supported\n");
 exit(EXIT_FAILURE);
 }
 glClearColor(0.9,1.0,1.0,1.0);
 send_buffers_to_GPU();
 create_shaders();
 glutMainLoop();
 return EXIT_SUCCESS;
}

Exercises #2

To be able to continue and not get lost introduce shader
compiler logs in case of compilation errors by adding the
following code into create_shaders() right at after vertex
shader compilation:

GLint compiled;
glGetShaderiv(v, GL_COMPILE_STATUS, &compiled
);
if (!compiled) {
 GLsizei maxLength, length;
 glGetShaderiv(v, GL_INFO_LOG_LENGTH,
&maxLength);
 GLchar* log = malloc(sizeof(GLchar)*
(maxLength+1));
 glGetShaderInfoLog(v, maxLength, &length,
log);
 printf("Vertex Shader compilation failed:
%s\n", log);

1.

9

 free(log);
}

Do not forget to repeat the same thing for fragment shader. Add linker debugging

GLint linked;
glGetProgramiv(program, GL_LINK_STATUS, &linked);
if (!linked) {
 GLsizei len;
 glGetProgramiv(program, GL_INFO_LOG_LENGTH, &len);
 GLchar* log = malloc(sizeof(GLchar)*(len+1));
 glGetProgramInfoLog(program, len, &len, log);
 printf("Shader linking failed: %s\n", log);
 free(log);
}

Create some error to verify if it works. For general (core) OpenGL errors we can use
the following glcheck() utility at suspicious places.

#define glcheck() {GLenum s; if ((s=glGetError()) != GL_NO_ERROR)
\
 fprintf (stderr, "OpenGL Error: %s at line %d\n",
\
 gluErrorString(s), __LINE__);}

Copy triangle.c into temperature.c and introduce
vertex temperature with additional array and buffer at
the end of send_buffers_to_GPU()

GLfloat vertex_temperature[] = {0, 1, 0.2,
0.1, 0.5, 0.9};
glGenBuffers(1, &vbo_temperature);
glBindBuffer(GL_ARRAY_BUFFER,
vbo_temperature);
glBufferData(GL_ARRAY_BUFFER,
sizeof(vertex_temperature),
 vertex_temperature,
GL_STATIC_DRAW);

and adding corresponding global attribute and VBOs IDs at the top of temperature.c
so that global section reads:

GLuint program;
GLuint vbo_vertices;
GLuint vbo_temperature;
GLint attribute_coord2d;
GLint attribute_temperature;

Replace shaders with

static const GLchar * vertex_shader[] = {
 ""
 "attribute float temperature;" // custom variable along with
vertex position
 "varying float t;" // communicate between the vertex and the
fragment shader
 "void main()"
 "{"
 " t = temperature;"
 " gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;"
 "}"

2.

10

};
static const GLchar * fragment_shader[] = {
 "vec3 Cool = vec3(0, 0, 1);" // Red
 "vec3 Hot = vec3(1, 0, 0);" // Blue
 "varying float t;" // Interpolated by fragment
 "void main()"
 "{"
 " vec3 color = mix(Cool, Hot, t);" // use the built-in mix()
function
 " gl_FragColor = vec4(color, 1.0);" // append alpha channel
 "}"
};

Bind temperature buffer and specify data layout within display() just before
glDrawElements() with

glBindBuffer(GL_ARRAY_BUFFER, vbo_temperature);
glVertexAttribPointer(attribute_temperature, 1, GL_FLOAT,
GL_FALSE, 0, NULL);

What happens if we don't enable temperature vertex array? Confer temperature.c
attached if having troubles.
Add additional custom vertex array for the pressure. Change the temperature array to
have values in Celsius for water boiling range [0-100]°C. Pressure should be in the
range of [0-1] MPa. Scaling to color range [0-1] should be done in shaders. Toggle
between them with the keyboard event by using the keys 'p' and 't ' that
glEnableVertexAttribArray() and glDisableVertexAttribArray()

corresponding vertex attribute arrays.

3.

Fetch pressure data as 2D y-slice in file
p_yNormal.vtk formatted in VTK that can
be quickly read by the following code:

GLfloat *point; int points;
GLuint *triangle; int
triangles;
GLfloat *pressure;

void read_VTK_pressure(const
char *filename)
{
 char line[80];
 int i; FILE *f;
 f = fopen(filename, "r");
 while(fgets(line, 80, f))
 {
 if (strstr(line,
"POINTS"))
 {
 float dummy_y;
 points =
atof(line+7);
 point =
malloc(points*2*sizeof(float));
 pressure =
malloc(points*sizeof(float));
 assert(point !=
NULL && pressure != NULL);
 for(i = 0; i <
points; ++i)
 fscanf(f, "%f %f
%f", &point[i*2], &dummy_y,
&point[i*2+1]);

4.

11

 }
 else if (strstr(line, "POLYGONS"))
 {
 triangles = atof(line+9);
 triangle = malloc(triangles*3*sizeof(GLuint));
 for (i = 0; i < triangles; ++i)
 {
 int n;
 fscanf(f, "%d %d %d %d", &n, &triangle[i*3],
 &triangle[i*3+1], &triangle[i*3+2]);
 }
 }
 else if (strstr(line, "FIELD"))
 {
 fgets(line, 80, f); // skip: p 1 27582 float
 for (i = 0; i < points; ++i)
 fscanf(f, "%f", &pressure[i]);
 }
 }
 fclose(f);
 printf("Read %d points for %d triangles for field %s\n",
 points, triangles, filename);
}

Insert this code into temperature.c and rename temperature with pressure
everywhere. We will be drawing indexed so the last lines of the display() now reads

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo_elements);
 glDrawElements(GL_TRIANGLES, triangles*3, GL_UNSIGNED_INT, 0);
 glutSwapBuffers();

Sending element data buffers to GPU is slightly changed by using
GL_ELEMENT_ARRAY_BUFFER instead of GL_ARRAY_BUFFER in subroutine

void send_buffers_to_GPU(void)
{
 GLuint vertex_array_object;
 glGenVertexArrays(1, &vertex_array_object);
 glBindVertexArray(vertex_array_object);

 glGenBuffers(1, &vbo_vertices);
 glBindBuffer(GL_ARRAY_BUFFER, vbo_vertices);
 glBufferData(GL_ARRAY_BUFFER, points*2*sizeof(GLfloat), point,
GL_STATIC_DRAW);

 glGenBuffers(1, &vbo_pressure);
 glBindBuffer(GL_ARRAY_BUFFER, vbo_pressure);
 glBufferData(GL_ARRAY_BUFFER, points*sizeof(GLfloat), pressure,
GL_STATIC_DRAW);

 glGenBuffers(1, &ibo_elements);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo_elements);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER,
triangles*3*sizeof(GLuint),
 triangle, GL_STATIC_DRAW);
}

Positioning (translation) of the motorbike and scaling of the pressure [-300..200] to
color mix range [0-1] can be done in shaders directly. Confer final pressure.c if having
trubles with coding.

12

Interactivity

Assemble the following Utah teapot
model and attached virtual trackball.h
and trackball.c sources from SGI.
Teapot is built-in model for testing
purposes in GLUT and uses legacy
glBegin() / glEnd() commands and

surface normals. Similarly deprecated
GLSL usage of gl_Vertex and
gl_Normal built-in input vertex

attributes is used in
vertex_shader[] . Nevertheless it is a

good starting point for viewing
applications.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <GL/glew.h>
#include <GL/glut.h>
#include "trackball.h"

GLuint program;

static const GLchar *
vertex_shader[] ={"\
varying vec3 normal,
lightDir;\
uniform mat4 RotationMatrix;\
void main()\
{ \

lightDir=normalize(vec3(gl_LightSource[0].posi

normal=normalize(gl_NormalMatrix*gl_Normal);\
 gl_Position =
gl_ProjectionMatrix * \

RotationMatrix*gl_ModelViewMatrix*gl_Vertex;\
}"};

static const GLchar *
fragment_shader[] ={"\
/* simple toon fragment
shader */\
/*
www.lighthouse3d.com
*/\
\
varying vec3 normal,
lightDir;\
\
void main()\
{\
 float intensity;\
 vec3 n;\
 vec4 color;\
\
 n =

13

normalize(normal);\
 intensity = max(dot(lightDir,n),0.0);\
 if (intensity > 0.98)\
 color = vec4(0.8,0.8,0.8,1.0);\
 else if (intensity > 0.5)\
 color = vec4(0.4,0.4,0.8,1.0);\
 else if (intensity > 0.25)\
 color = vec4(0.2,0.2,0.4,1.0);\
 else\
 color = vec4(0.1,0.1,0.1,1.0);\
 gl_FragColor = color;\
}"};

void create_shaders()
{
 GLuint v, f;

 v = glCreateShader(GL_VERTEX_SHADER);
 f = glCreateShader(GL_FRAGMENT_SHADER);
 glShaderSource(v, 1, vertex_shader, NULL);
 glShaderSource(f, 1, fragment_shader, NULL);
 glCompileShader(v);
 GLint compiled;
 glGetShaderiv(v, GL_COMPILE_STATUS, &compiled);
 if (!compiled) {
 GLsizei maxLength, length;
 glGetShaderiv(v, GL_INFO_LOG_LENGTH, &maxLength);
 GLchar* log = malloc(sizeof(GLchar)*(maxLength+1));
 glGetShaderInfoLog(v, maxLength, &length, log);
 printf("Vertex Shader compilation failed: %s\n", log);
 free(log);
 }
 glCompileShader(f);
 glGetShaderiv(f, GL_COMPILE_STATUS, &compiled);
 if (!compiled) {
 GLsizei maxLength, length;
 glGetShaderiv(f, GL_INFO_LOG_LENGTH, &maxLength);
 GLchar* log = malloc(sizeof(GLchar)*(maxLength+1));
 glGetShaderInfoLog(f, maxLength, &length, log);
 printf("Fragment Shader compilation failed: %s\n", log);
 free(log);
 }
 program = glCreateProgram();
 glAttachShader(program, f);
 glAttachShader(program, v);
 glLinkProgram(program);
 GLint linked;
 glGetProgramiv(program, GL_LINK_STATUS, &linked);
 if (!linked) {
 GLsizei len;
 glGetProgramiv(program, GL_INFO_LOG_LENGTH, &len);
 GLchar* log = malloc(sizeof(GLchar)*(len+1));
 glGetProgramInfoLog(program, len, &len, log);
 printf("Shader linking failed: %s\n", log);
 free(log);
 }
 glUseProgram(program);
}

float lpos[4] = {1, 0.5, 1, 0};
GLfloat m[4][4]; // modelview rotation matrix

14

float last[4], cur[4]; // rotation tracking quaternions
int width, height, beginx, beginy;
float p1x, p1y, p2x, p2y;

void display(void) {
 GLuint location = glGetUniformLocation(program, "RotationMatrix");
 build_rotmatrix(m, cur);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLightfv(GL_LIGHT0, GL_POSITION, lpos);
 if(location >= 0)
 glUniformMatrix4fv(location, 1, GL_FALSE, &m[0][0]);
 glutSolidTeapot(0.6);
 glutSwapBuffers();
}

void reshape (int w, int h)
{
 double l = 1;
 width=w; height=h;
 glViewport (0, 0, w, h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-l, l, -l, l, -l, l);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keys(unsigned char key, int x, int y)
{
 if (key == 27 || key == 'q')
 exit(0);
}

void mouse(int button,int state, int x, int y)
{
 beginx = x;
 beginy = y;
}

void motion(int x,int y)
{
 p1x = (2.0*beginx - width)/width;
 p1y = (height - 2.0*beginy)/height;
 p2x = (2.0 * x - width) / width;
 p2y = (height - 2.0 * y) / height;
 trackball(last, p1x, p1y, p2x, p2y);
 add_quats(last, cur, cur);
 beginx = x;
 beginy = y;
 glutPostRedisplay();
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
 glutInitWindowSize(512, 512);
 glutInitWindowPosition((glutGet(GLUT_SCREEN_WIDTH)-512)/2,
 (glutGet(GLUT_SCREEN_HEIGHT)-512)/2);
 glutCreateWindow("Use mouse to rotate");

 trackball(cur, 0.0, 0.0, 0.0, 0.0);

15

 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMotionFunc(motion);
 glutKeyboardFunc(keys);

 glEnable(GL_DEPTH_TEST);
 glClearColor(1.0,1.0,1.0,1.0);
 glewInit();
 if (!glewIsSupported("GL_VERSION_2_0"))
 {
 printf("GLSL not supported\n");
 exit(EXIT_FAILURE);
 }
 create_shaders();
 glutMainLoop();
 return EXIT_SUCCESS;
}

To build two sources we add the following line to Makefile :

teapot: teapot.o trackball.o

Exercises #3

OK, it rotates. But how come the light rotates with the teapot? I'm pretty sure that the
light is not rotated while the teapot vertices are. Answer: Take a look into the
normal . You need to rotate the vertex normal in the vertex_shader[] too! With a

code like:

vec4 n = RotationMatrix*vec4(gl_NormalMatrix*gl_Normal, 1);\
normal = normalize(n.xyz); \

1.

Introduce zoom in/out functionality of the
viewer by adding mouse wheel events to
the end of mouse()

if (button == 3 && state ==
GLUT_DOWN)
 { zoom *= 1.1;
glutPostRedisplay(); }
else if (button == 4 && state
== GLUT_DOWN)
 { zoom /= 1.1;
glutPostRedisplay(); }

and introduction of global variable float
zoom = 1.0; that is communicated to
GPU by additional uniform float Zoom;
in the vertex_shader[] . Last line is
replaced by

 gl_Position =
gl_ProjectionMatrix *
RotationMatrix \
 *
gl_ModelViewMatrix*vec4(Zoom*gl_Vertex
1.0); \

2.

16

In the display() we send zoom to GPU before drawing the glutSolidTeapot()
by adding

 location = glGetUniformLocation(p, "Zoom");
 if (location >= 0) glUniform1f(location, zoom);

Simplify the cartoon shader to Gouraud shader by using just greyscale gl_FragColor
= vec4(intensity); or copper mix

 vec4 copper_ambient = vec4(0.191250, 0.073500, 0.022500,
1.000000); \
 vec4 copper_diffuse = vec4(0.703800, 0.270480, 0.082800,
1.000000); \
 gl_FragColor = copper_ambient + intensity*copper_diffuse;\

3.

Reading Objects

Sometimes we hit limitations of the
visualisation tools for the data that
we want to visualize. For example
motorBike.obj from OpenFOAM
contains object groups that we want
to show colored separately and not
as whole. Neither VisIt and
ParaView can read Wavefront OBJ
file with group separation. We are
forced to convert motorBike.obj into
bunch of files and read them one by
one. The following wavefront.c
converts motorBike.obj into 67 files.
Try to open them in VisIt and
ParaView. Note that we need to
compensate vertex counting that
starts with 1 and not with 0.

#include <stdio.h>

#define MaxVertices 400000
#define MaxFaces
400000
#define MaxGroups 100

float
vertex[MaxVertices*3];
unsigned int
face[MaxFaces*3];
char
group_name[MaxGroups][80];
int
start_face[MaxGroups];

int vertices = 0;
int faces = 0;
int groups = 0;

void read_wavefront(const
char *filename)
{
 char line[80];
 FILE *f =
fopen(filename, "r");

17

 while(fgets(line, sizeof(line), f))
 switch(line[0])
 {
 case 'v':
 sscanf(&line[1], "%f %f %f", &vertex[vertices*3],
 &vertex[vertices*3+1], &vertex[vertices*3+2]);
 ++vertices;
 break;
 case 'g':
 sscanf(&line[1], "%s", group_name[groups]);
 start_face[groups++] = faces;
 break;
 case 'f':
 sscanf(&line[1], "%d %d %d", &face[faces*3],
 &face[faces*3+1], &face[faces*3+2]);
 --face[faces*3]; --face[faces*3+1];
 --face[faces*3+2]; ++faces;
 break;
 }
 fclose(f);
 start_face[groups] = faces;
 printf("Read %d vertices and %d faces within %d groups from %s\n",
 vertices, faces, groups, filename);
}

void write_wavefront(int group_number)
{
 int i = 0; char n[80], *p = group_name[group_number];
 while (*p != '%' && *p != '\0') n[i++] = *p++; // remove % from name
 n[i++] = '.'; n[i++] = 'o'; n[i++] = 'b'; n[i++] = 'j'; n[i] = '\0';
 FILE *f = fopen(n, "w"); fprintf(f, "# Wavefront OBJ file\n");
 for (i = 0; i < vertices; i++)
 fprintf(f, "v %g %g %g\n", vertex[i*3], vertex[i*3+1],
vertex[i*3+2]);
 fprintf(f, "g %s\n", group_name[group_number]);
 for (i = start_face[group_number]; i < start_face[group_number+1];
++i)
 fprintf(f, "f %d %d %d\n", face[i*3]+1, face[i*3+1]+1,
face[i*3+2]+1);
 fclose(f);
}

int main(int argc, char **argv)
{
 int i;
 read_wavefront("motorBike.obj");
 for(i = 0; i < groups; i++) write_wavefront(i);
 return 0;
}

Exercises #4

Insert wavefront.c
into extended
teapot.c interactivity
example above and
save it as
motorbike.c .

Verify that there are
no compile problems
and that the
main() contains

1.

18

read_wavefront("motorBike.obj"); . Disable lengthy wavefront saving in main() .
Instead of drawing of the teapot in display() we will draw single vertex array object
as a point cloud with adding

//glutSolidTeapot(0.6);
glVertexPointer(3, GL_FLOAT, 0, vertex);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, vertices);
glDisableClientState(GL_VERTEX_ARRAY);

that pushes 132871 vertices (1.5MB) from client memory to GPU on every redraw.
Better approach would be to follow VBOs principles by generating vertex buffer in GPU
as temperature.c example.

2.

We see that rotation of the motorbike around the front wheel is not really nice. To
compensate we translate all points in the vertex_shader[] by adding vec3(-0.75,
0, -0.7); to every vertex in world coordinates and thus moving motor bike to origin.
Last part of the vertex_shader[] now reads:

vec3 position = gl_Vertex.xyz + vec3(-0.75, 0, -0.7); \
gl_Position = gl_ProjectionMatrix * RotationMatrix \
 * gl_ModelViewMatrix*vec4(Zoom*position, 1.0); \

3.

Instead of drawing points use indexed drawing of faces by using

// glDrawArrays(GL_POINTS, 0, vertices);
glDrawElements(GL_TRIANGLES, faces*3, GL_UNSIGNED_INT, face);

Result is silhouette as we did't provided vertex normals.

4.

Calculate vertex normals by averaging nearby faces normals that are calculated with
cross product. We need to add normal array as a global variable

float normal[MaxVertices*3];

and add glNormalPointer with glEnableClientState(GL_NORMAL_ARRAY) to the last
part of display() that now reads:

//glutSolidTeapot(0.6);
glNormalPointer(GL_FLOAT, 0, normal);
glVertexPointer(3, GL_FLOAT, 0, vertex);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glDrawElements(GL_TRIANGLES, faces*3, GL_UNSIGNED_INT, face);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);

5.

19

For calculation of normals we quickly invent the following subroutine:

void
calculate_normals
{
 int i;
 for(i =
0; i <
vertices*3;
++i)

normal[i] =
0.0;
 for(i =
0; i <
faces; ++i)
 {
 int
p1 =
face[i*3]*3;
 int
p2 =
face[i*3+1]*3
 int
p3 =
face[i*3+2]*3
 float
ux =
vertex[p3]-vertex
 float
uy =
vertex[p3+1]-
 float
uz =
vertex[p3+2]-
 float
vx =
vertex[p2]-vertex
 float
vy =
vertex[p2+1]-
 float
vz =
vertex[p2+2]-
 float
nx = uy*vz
- uz*vy;
 float
ny = uz*vx
- ux*vz;
 float
nz = ux*vy
- uy*vx;
 float
length =
sqrt(nx*nx+ny

normal[p1]
+=
nx/length;

normal[p1+1]

20

Last modified on 07/04/13 20:02:44

+= ny/length;
 normal[p1+2] += nz/length;
 normal[p2] += nx/length;
 normal[p2+1] += ny/length;
 normal[p2+2] += nz/length;
 normal[p3] += nx/length;
 normal[p3+1] += ny/length;
 normal[p3+2] += nz/length;
 }
}

called in main() right after

read_wavefront("motorBike.obj"); . Now mistery occurs with garbled part of
motorbike. Where the problem is? Possible suggestions: pointer problems,
memory leackage, normals calculation, OpenGL bug, shader, data, ... Use
debugger, Valgrind and VisIt (normals) to locate the problem. Hint: Observe
number of triangles versus number of vertices. Quick fix is given as final
motorbike.c source.

Homework

Colorize the model by groups1.
Add opacity (alpha)2.
Find (or create) nice shader source3.
Add scientific data such as pressure at the surface4.
Draw streamlines with velocity colorization5.
Convert example into GPU buffered (VBOs).6.
Combine sliced pressure data(VTK) and model (OBJ) together as custom CFD
visualization not available in visualization tools to date.

7.

Attachments (24)

21

